Pressure Calculation in Polar and Charged Systems using Ewald Summation: Results for the Extended Simple Point Charge Model of Water
نویسندگان
چکیده
Ewald summation and physically equivalent methods such as particle-mesh Ewald, kubic-harmonic expansions, or Lekner sums are commonly used to calculate long-range electrostatic interactions in computer simulations of polar and charged substances. The calculation of pressures in such systems is investigated. We find that the virial and thermodynamic pressures differ because of the explicit volume dependence of the effective, resummed Ewald potential. The thermodynamic pressure, obtained from the volume derivative of the Helmholtz free energy, can be expressed easily for both ionic and rigid molecular systems. For a system of rigid molecules, the electrostatic energy and the forces at the atom positions are required, both of which are readily available in molecular dynamics codes. We then calculate the virial and thermodynamic pressures for the extended simple point charge (SPC/E) water model at standard conditions. We find that the thermodynamic pressure exhibits considerably less system size dependence than the virial pressure. From an analysis of the cross correlation between the virial and thermodynamic pressure, we conclude that the thermodynamic pressure should be used to drive volume fluctuations in constant-pressure simulations.
منابع مشابه
2 3 Ju n 19 98 Pressure Calculation in Polar and Charged Systems using Ewald Summation : Results for the Extended Simple Point Charge Model of Water
Ewald summation and physically equivalent methods such as particle-mesh Ewald, kubic-harmonic expansions, or Lekner sums are commonly used to calculate long-range electrostatic interactions in computer simulations of polar and charged substances. The calculation of pressures in such systems is investigated. We find that the virial and thermodynamic pressures differ because of the explicit volum...
متن کاملMultiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
Recently, we have proposed an efficient scheme for Monte Carlo simulations, the multiple "time step" Monte Carlo (MTS-MC) [J. Chem. Phys. 117, 8203 (2002)] based on the separation of the potential interactions into two additive parts. In this paper, the structural and thermodynamic properties of the simple point charge water model combined with the Ewald sum are compared for the MTS-MC real-/re...
متن کاملHigh Pressure Phase Equilibrium of (Solvent + Salt + CO2) Systems by the Extended Peng-Robinson Equation of State
An extended Peng-Robinson equation of state (EPR-EOS) is used to model the vapor-liquid equilibrium (VLE) in systems containing (water + NaCl + CO2), (water + methanol + NaCl + CO2), (water + Na2SO4 + CO2) and (water + NH4Cl + CO2). The binary and ternary interaction parameters between salt and solvent are adjusted...
متن کاملMolecular Dynamics Simulations of Double-Stranded DNA in an Explicit Solvent Model with the Zero-Dipole Summation Method
Molecular dynamics (MD) simulations of a double-stranded DNA with explicit water and small ions were performed with the zero-dipole summation (ZD) method, which was recently developed as one of the non-Ewald methods. Double-stranded DNA is highly charged and polar, with phosphate groups in its backbone and their counterions, and thus precise treatment for the long-range electrostatic interactio...
متن کاملMolecular dynamics simulations of ionic concentration gradients across model bilayers
To model a concentration gradient across a biomembrane, we have performed all-atom molecular dynamics simulations of NaCl solutions separated by two oppositely charged plates. We have employed the recently formulated three-dimensional Ewald summation with correction ~EW3DC! technique for calculations of long-range electrostatics in two-dimensionally periodic systems, allowing for different salt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998